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Effect of porosity and stress concentration 
associated with pores on elastic creep by crack 
growth in brittle solids 

V. D. KRSTIC* ,  W. H. ERICKSON 
Physical Metallurgy Research Laboratories CANMET/EMR, Ottawa, Ontario, Canada 

The solution for the creep rate of a porous solid as a function of pore volume fraction, pore 
size and the radial or annular flaw size, is presented. The analysis is based on the concept of 
crack opening displacement which assumes that the displacement of a solid under stress is 
solely due to the opening of all radial or annular cracks emanating from the surface of the 
cavities. It is shown that the strain rate by crack growth is a strong function of pore size and 
preexisting flaw size. A linear relationship was found to exist between the strainrate by crack 
growth and the porosity volume fraction. 

1. Introduction 
Brittle solids are known to fracture catastrophically 
when applied stress reaches a critical value. Stresses 
below this critical value may also cause fracture if 
applied and maintained constant for a sufficient length 
of time. This time-dependent deformation is referred 
to as creep. The creep deformation of solids can occur 
by a number of  mechanisms such as dislocation climb 
[1, 2], dislocation glide [3, 4], grain boundary sliding 
[5, 6] and Coble [9] creep. 

Recently, it has been proposed that an additional 
mechanism of  creep deformation of  ceramic material 
can be operative over ranges of stress and temperature 
at which other creep mechanisms are not expected 
to be dominant and is referred to as "elastic" or 
compliance creep [10, 11]. This mechanism is based 
on microstructural changes occurring during creep 
deformation and can be superimposed on any other 
creep process. Extensive experimental studies of  the 
creep kinetics have indicated that crack nucleation 
and growth are solely responsible for elastic creep in 
a wide variety of  ceramics [12-14]. 

An important observation made in a number of  
ceramic materials is that this non-linear creep is most 
frequently observed in solids with a large grain size or 
with the presence of  residual pore phase [15, 16]. 
Based on the results obtained from the study of  the 
effect of microstructure on creep deformation in poly- 
crystalline alumina, Crosby and Evans [16] suggested 
that pores play an active role in promoting elastic 
creep by crack growth. 

The purpose of  this paper is to present an analysis 
on the effect of  pores and the stress concentration 
induced by the presence of pores on the elastic creep 
of ceramics occurring at low and intermediate tern- 

peratures. A concept of crack opening displacement is 
introduced to model the strain rate of a solid 
containing pores. 

2. Elastic creep based on crack opening 
displacement 

It is well known that most ceramics contain pores 
even in the fully dense state produced by high- 
pressure high-temperature techniques. The presence 
of pores invariably leads to the generation of  stress 
concentrations which are often so high that they 
can not be neglected. It has been demonstrated 
in a number of systems that the presence of pores 
plays a dominant role in determining the mechani- 
cal properties and elastic response of  solids when 
subjected to external stress [17-19]. It is further 
believed that pores also influence the creep defor- 
mation of  a structural component by the growth of  
radial cracks and their excessive opening due to 
the presence of  stress concentrations. In what follows 
it is assumed that the total strain of  a solid con- 
taining cavities is entirely due to opening of  these 
cavities and cracks associated with cavities. The 
contribution of  all other deformational mechanisms 
is assumed to be absent. As a consequence, this mech- 
anism of time-dependent deformation is expected 
to be operative in a high-stress low-temperature 
regime where blunting effects due to mass transport 
are minimal. 

Further, it is assumed that each cavity possesses 
an annular or radial crack on both sides as shown 
in Fig. 1. When an external stress is applied on 
such a solid, it develops a stress concentration out- 
side the cavity and this stress can be represented 
by a tangential component of the form [20] (for 
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Figure 1 Spherical pores subjected to external stress. 
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for a spherical pore, and 

3 ,] O'0 = O" [~ (R)2 + ~ (R)4 + (2) 

for a cylindrical cavity. In Equations l and 2 a is the 
applied stress, v Poisson's ratio, R the cavity radius 
and x the distance from the centre of the cavity. 

For a cylindrical cavity with radial cracks on both 
sides (Fig. 1), the total displacement (&) at remote 
points is [21] 

a, = & o  + & (3) 

where Anr represents the displacement of a solid 
containing no cracks and Ar is the displacement due to 
crack opening. 

The displacement due to crack opening is given by 
the expression [21] 

4aC 
A o -  E '  V2 (4) 

where 

V 2 - -  1 .071+ 0.250 ( C )  - 0 . 3 5 7 ( b )  2 

+ 0 . 1 2 1 ( C )  3 -- 0 . 047 (C)4  + 0 . 0 0 8 ( C )  5 

 ln(1-  
C (=  R + s) is the total crack length, a the applied 
stress, b the sample width and 

E '  = E0 for plane stress 

E" = El(1 - v 2) for plane strain 

For the case of a single isolated crack in a large 
specimen ( C / b - +  0) Equation 4 assumes a simple 

f o r m  

Ac - E m  (5) 

The displacement due to the opening of N cracks is 

3.144 a N C  2 
Ao - bE'  (6) 

The compliance of a solid of height, h, and width, b, 
with N c (=  N/bh) cracks (cavities) per unit area is 

(1 
Qer - ah - ~ + E J (7) 

and the total strain is 
a 3.144aNcC2) 

ec = ~rQef = E00 + ~ J (8) 

The maximum crack opening and hence the maxi- 
mum displacement at remote points due to a single 
isolated circular crack can be obtained through the 
expression relating the compliance, Qef, and the strain 
energy release rate, G, 

p2  63Qe f 
G - 2 ~A (9) 

where P is the applied load, A is the crack surface area 
and Qer is now defined as displacement over force. 

The stress intensity factor (K0 for a circular crack 
of length C located in the centre of a cylindrical 
specimen of radius b is [21] 

K I = O'net (7~C) I/2 V 3 (10)  

where 

V3 = _2 1 + - + 0.421 

X [l -- -~jcll/2 

P 
0-ne t = )r(b 2 - C 2) 

P 
f f  = 

~b 2 

A = ~C 2 

dA = 2~CdC 

Neglecting the terms beyond (C/b) for C/b -~ O, the 
compliance of a solid containing a single isolated 
penny shaped crack can now be obtained by combin- 
ing Equations 9 and 10 to yield 

dQe r = ~ d (11) 

Integration of Equation 11 gives : 

Q o f -  3~z2bE, 

The integration of  Equation 11 has been carried out 
assuming that Qef is zero so that the integrated value 
in Equation 12 represents the compliance due to the 
cracks only. The displacement and complianee are 
related via the equation 

16aC 3 
At ---- Q~rP 3rcE,b 2 (13) 
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For N v cracks (pores) per unit volume (N p = N/nb2h) 
and Anc = (tr/E)h, the total strain of a solid is 

A t ( 1  16NP C3_ ' ] (14) 
h - ~p = 0"Qef = o- E00 + 3E' ] 

For plane strain condition, Equation 14 may be 
written in the form 

16(1 - v2)trNP C 3 
~p = e0 + 3E0 (15) 

which recovers the result obtained by Hasselman and 
Singh [22]. In Equation 15, e0 is the elastic strain of a 
crack-free solid. 

So far the analysis has concentrated on a solid 
containing large number of cracks subjected to a 
uniform external stress in which most of these cracks 
are located away from the specimen surface. In the 
case of annular or radial cracks emanating from the 
cavity surface, the stress concentration due to the 
presence of cavities is much larger than the applied 
stress (two or three times) and this is considered to have 
a significant effect on the crack extension process. The 
effect of stress concentration on crack opening dis- 
placement and therefore elastic strain of a solid, can 
be obtained by imposing a tangential component of 
stress concentration outside a spherical pore on 
the surface of an annular or radial crack. For the 
crack-cavity geometry depicted in Fig. 1, a tangential 
component is tensile in nature and is acting in the 
direction to open the crack. Thus, from Equations 1, 
2, 8 and 15, the maximum strain due to opening of 
cracks in a porous solid is (for plane strain condition) 

3.144(1 - vZ)crNC(R -F s )  2 
~c E0 

( R 2 3R 4 ) 
x 2(R + s) 2 + 2(R + s) 4 + 1 (16) 

1 6 ( 1 - v 2 ) a N P ( R + s ) 3 ( 2 ~ - - 5 v  R 3 
ep = 3E0 5v) (R + s) 3 

9 R 5 ) 
+ 2(7 - 5v)(R + s) ~ + 1 (17) 

It can easily be shown from Equations 16 and 17 that 
the corresponding strain rates by crack growth are 

d/; c 

dt 

d~p 

dt 

m 8 c  

8p 

• 

o 
6.288(1 -- v2)NCR(1 + s/R) ~ 

3 ) ds 
2(1 -~ s /R)  4 dt (18) 

o 
16(1 -- v2)NPR2(1 + s/R)-~o 

3 1 '~ ds 
7 - 5v(1 + s/R) 5)-~ (19) 

From Equations 18 and 19 it is immediately evident 
that, as expected, there is a strong s/R dependence 
of strain rate and this dependence can further be 
reinforced by the creation of new cracks which is a 
common feature occurring in many polycrystalline 
solids subjected to stress. 

Assuming the stress field interaction of neighbouring 
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Figure 2 Predicted variation of  a normalized strain rate with s/R at 
a given porosi ty volume fraction, k = constant.  

cracks is negligible (for small pore volume fractions), 
it is of interest to relate the pore volume fraction to the 
rate of elastic creep induced by the radial crack 
growth. The relationship between the number of pores 
per unit volume (N p) and their volume fraction (V) is 
given by the expression 

3V 
N v - (20) 

4rcR 3 

when N v in Equation 19 is replaced by Equation 20, 
the creep rate of a solid containing pores becomes 

12V~ 
8p - R ~  (1 - v 2)(1 + s/R) 2 

( 3 l )d, 
x 1 7 -  5v(1 + siR) 5 -~ (21) 

Fig. 2 illustrates the predicted change of strain rate 
with s/R for various porosity levels. Clearly, Equation 
21 shows that the strain rate is inversly proportional 
to the pore size which means that, for a given volume 
fraction, a larger number of small size pores will 
exhibit lower strain rate in comparison to one con- 
taining a small number of large size pores. Another 
interesting result of Equation 21 is that at sufficiently 
high values of s/R (>  1) the effect of stress concentra- 
tion due to the presence of pores becomes negligible. 
In such cases, the presence of pores affects the strain 
rate by crack growth only through the increase of total 
crack length (R + s) and the crack density. 

For large s/R (>  1) for which the interaction effects 
between the pore stress field and the crack tip stress 
field are minimal, Equation 21 reduces to 

12Va 
8v - rcR~00 (1 -- v2)(1 + s/R)2~ (22) 

where ~ = ds/dt. Thus, the total strain rate of a solid 
containing pores is 

I2Va 
8t = 80 + ~ (1 - v2)(1 + s/R)2i (23) 

where 80 is the elastic strain rate of a pore-free solid. 
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3. Ef fect  of  stress in tensi ty  f ac to r  on 
elastic creep 

At low temperatures, where mass transport by dif- 
fusional mechanisms is absent, a radial crack extension 
will occur when a local stress intensity factor, K~, at 
the tip of a crack reaches a critical value, K~c. How- 
ever, substantial crack growth can occur at stress 
intensity factors well below a critical value, and this 
type of crack extension was found to be a strong 
function of stress intensity factor. Extensive literature 
data have shown that the rate of crack growth at a 
given temperature can be described by the equation of 
the form 

= AK~j (24) 

where A and n are constants for a given material. 
For an annular flaw emanating from the spherical 

pore, the stress intensity factor was found to be [19] 

Kl = 2aR'/2(1 + s /R)  1/2 - q~ (25) 
7C 

where 

1 ~1/2~ 
~b = 3 [ 1 -  (1 (1 _~-s/R)2j j 

( 1 )1/2 
+ \ 1 (1 + s/.R) 2 

( ,  , ) 
x 2(1 + s/R) 2 + 2(1 + s/R) 4 + 1 

Combination of Equations 24 and 25 gives 

k = A (2adp).R.12(l +_sir )n/2 (26) 

The creep rate by crack growth can now be obtained 
by substituting Equation 26 in Equation 19 to yield 
for a constant crack density, N p 

~p _ 16A(1 - V 2)  (1 + s/R)"/2+i(2fo)'NPan+~R "/2+2 
gn/2 Eo 

x 1 - (7 - 5v)(1 + s/R) 5 (27) 

Experimental data on a wide variety of polycrystalline 
ceramics have shown that n can vary from 10 for 
hot-pressed silicon nitride [23] to nearly 18 for soda- 
lime-silica glass [24], indicating that the elastic creep 
by crack growth can be highly non-linear. The same 
conclusion has been reached by Venkateswaran 
and Hasselman [10] who used a somewhat different 
approach. 

The effect of pore volume fraction on creep rate can 
now be obtained by combining Equations 20 and 27 to 
give 

12AV(1 - v 2) 
i p  = E0g , , / 2+ l  (1 + s/R)"/2+~(240"a"+lR"/2-1 

x 1 - (7 - 5v)(1 + s/R)' 

Implicit in the use of Equation 28 is the premise that 
the stress concentration induced by the presence of 

pores affects both the rate of crack growth (~) and the 
crack opening. If, however, it is assumed that the 
creep rate is dictated by the opening of N p cracks per 
unit volume, without taking into account the effect of 
stress concentration due to the presence of pores, then 
from Equation 15 the elastic creep rate by crack 
growth is 

16(1 - v2)NPaC 2 . 
~P = E0 s (29) 

Considering that the condition for crack extension is 
determined by the stress intensity factor at the tip of 
a crack, then the creep rate by crack growth becomes 
(combination of Equations 20, 26 and 29) 

~p 12(1 - v2)AV (2qS),a,+lR,/2_3( 1 + s/R)n/2+ 2 
= n,/2+l E o 

(30) 

Again, as in previous cases, the creep rate is highly 
non-linear. 

4. Rate of  crack g r o w t h  by mass 
. transport  

The propagation of cracks by diffusional processes 
has been a matter of controversy for quite some time. 
Liu [25] has considered the strain field interaction 
between a crack tip stress field and a point defect. 
From this treatment it is concluded that, based on the 
first-order interaction effect, the vacancies are always 
repelled from the crack tip whereas interstitials are 
attracted to it. Heald et al. [26] on the other hand have 
shown that when the second-order interaction effect is 
considered, the crack tip always attracts vacancies but 
repels interstitials. This contradicts the stress cor- 
rosion cracking model developed by Liu. Crussard 
[27] was the first who pointed out that the second- 
order elastic interaction must be taken into account 
when considering the diffusion of point defects to a 
crack tip. According to Crussard vacancies will always 
diffuse towards the crack tip in agreement with Heald 
et al. 

A somewhat more generalized approach to this 
problem has been developed by Stevens and Dutton 
[28] who calculated the total chemical potential of 
atoms at the crack tip by including the strain and 
surface energy terms. A corollary of their model is that 
vacancies will be either attracted to or repelled from a 
crack tip according to magnitude of the applied stress. 
From Stevens' and Dutton's analysis the crack growth 
by surface and grain boundary diffusion is 

ds - ~)2NaD~(Ba2 -- ygb/C)/212kT (31) 
dt 

surface diffusion 

ds = f~(~Dgb(Ba2C _ ~gb - -  al)/4Ll2kT (32) 
dt 

grain boundary diffusion 

where F2 is the atomic volume, Na is the number of 
atoms per unit area, Ds is the surface diffusion coef- 
ficient, 6 is the grain boundary width, Og b is the grain 
boundary diffusion coefficient, l is the crack tip radius, 
L is approximately half the grain size, and k and T 
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have their usual meaning and B = 7c(1 - vz)/2Eer. 
The uniqueness of Steven's and Dutton's approach is 
that the thermodynamic stability of  any crack can be 
calculated only if the local stress at the tip of the crack 
is known. 

Substitution of  the above equations into Equation 
13 yields the creep rates by crack growth 

~p = 12(1 - v2)V~r (1 + s/R) 2 
rtREo 

( 3 ) 
x 1 - (7  - 5 v ) ( 1  + s /R)  5 n2NaDs 

x (Bo 2 - Vgb/C)/212kT surface diffusion 

(33) 
40 12(1 - v2)Vcr 

= ~REo (1 + s/R) 2 

( 3 ) 
x 1 - (7 - 5v)(l + s/R) s Dgb~"]O 

X ( B ~ 7 2 C  - -  "~gb - -  M)/4LlzkT 

grain boundary diffusion (34) 

Alternatively, assuming that the crack opening is 
entirely due to uniform stress acting at infinity, with- 
out taking into account the effect of  a local stress con- 
centration due to the presence of pores, Equations 33 
and 34 assume the form 

36(1 - v2)VCa 
~p = ~--~on3--]~--~ ~2N,,Ds(eo'2 - 7gb/C) 

surface diffusion (35) 

36(1 - v2)VCa 
sp = - ~ - ~ 3 L / - - - 7 ~  T ~SDgb (B~ 2 C - 7gb -- 01) 

grain boundary diffusion (36) 

Evidently, at high stress levels such that the quadratic 
in stress exceeds those linear in stress, for both dif- 
fusional mechanisms 

~ a 3 (37) 

which indicates that creep by crack growth is non-linear. 
Further, it can easily be shown that when the crack 

length is greater than a critical value and the sum of 
the strain energy per atom at the crack tip and the 
chemical potential due to curvature at the crack tip is 
positive the crack will grow and sharpen by mass 
transport process. If, however, the surface energy term 
is larger than the strain energy term in Equation 33, 
the crack will spheroidize and shrink as vacancies 
diffuse away from the crack tip. As pointed out earlier, 
here we are concerned with the case when the strain 
energy term due to stress concentration is higher than 
the surface energy term and the crack propagates 
without the help of mass transport. This is considered 
to be the dominant mechanism of crack growth at low 
and intermediate temperatures. 

5. Discussion 
Creep by crack growth is considered to be of  great 
importance because it may be the only mechanism of 
creep deformation operative at low and moderate 

temperatures. For  example, in the case of aluminium 
oxide, Hasselman et al. [29] found the existance 
of creep by crack growth at temperatures at which 
diffusional creep mechanisms were negligible. 

Furthermore, the elastic creep by crack growth 
may also be important in interpreting data in a single- 
loading condition. As soon as the load is applied on a 
brittle solid, crack extension will occur and this will be 
reflected in the change of  its elastic response. This 
can be of particular significance with thermally aniso- 
tropic polycrystalline solids where spontaneous crack- 
ing may occur even without the application of  external 
stress. The residual stress generated due to the dif- 
ference in thermal expansion coefficients in different 
directions within a single grain, may greatly assist in 
promoting crack growth at stresses much lower than 
the fracture stress. This phenomenon will further be  
reinforced by a coarse-grained structure resulting 
in a grain size effect opposite to that predicted from 
Nabarro-Herr ing and Coble creep. 

In the present analysis, the grain size dependence of  
elastic creep can be accounted for simply by equating 
the inherent flaw size, S, with the grain size, F, i.e. 
s = F. When this is done, a strong dependence of  
elastic creep on grain size is predicted (Fig. 2). Such 
strong effect of  siR or FIR on elastic creep by crack 
growth indicates again the importance of pores and 
stress concentration associated with pores in inter- 
preting creep data in porous solids. 

In addition to flaw (pore) size dependence of creep, 
a strong effect of pore volume fraction is also evident 
in Fig. 2. In the presence of  pores, crack propagation 
would generally occur when the stress concentration 
at the radial (annular) cracks reaches a critical value. 
Such local stresses would be reached at more localities 
at higher applied stresses, and so the localized crack 
extension would become an important stress relieving 
mechanisms. This would allow increasing proportions 
of elastic creep strain to occur with increasing stress. 
Accordingly, the slope of  the stress-strain rate curve 
would gradually increase with stress up to the fracture 
stress of the material in much the same way as the 
strain rate increases with crack length, s/R, predicted 
in Fig. 2. Such strong effect of  porosity on creep 
is evident from the work of Fryer and Roberts [30] 
who observed two different stress exponents for two 
aluminas with different porosity. Coble and Kingery 
[31] also observed an increase of creep rate by a factor 
of 30 from 0 to 50% porosity. These results are in 
excellent agreement with the present analysis and in 
particular with Equations 35 and 36 which show a 
strong strain rate dependence of  pore volume fraction 
and siR. It is believed that, in this particular set of 
experiments, pores and therefore stress concentration 
associated with pores, must have played the dominant 
role in controlling the creep rate. In addition to 
supporting the crack opening displacement conceot 
when interpreting the creep data in porous solids 
advanced in the present analysis, the reported results 
[31] also imply that the full potential of  a material, in 
terms of  its resistance to creep, can be realized only at 
theoretical density. 

In analogy to the effect of  stress concentration due 
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to the presence of pores on strength [19], some small 
porosity is expected to have no significant effect on 
elastic creep in systems where the radial or annular 
cracks are much longer than the pore size itself. 
This behaviour is likely to be encountered in coarse- 
grained or highly cracked structures for which s/R is 
large. 

It is clear from the present analysis that the creep 
rate by crack growth is directly proportional to the 
initial crack density. In systems where the nucleation 
of new cracks during stressing is less likely to occur, as 
may be the case with isotropic fine-grained materials 
free of internal stresses, the slope of the stress-strain 
rate curve is expected to be somewhat different from 
that in anisotropic solids. In thermally anisotropic 
polycrystalline solids, for example, the residual stresses 
may promote the initiation of new cracks at com- 
paratively lower applied stresses and the slope of 
stress-strain rate curve would gradually, rather than 
abruptly, increase with stress up the fracture stress on 
the materials. In such cases, the number of cracks 
responsible for creep and the level of applied stress 
become dependent parameters. This has led many 
investigators to interpret the strain rate-stress curve in 
terms of two regions: one at low stresses where nuclea- 
tion of new cracks and the rate of crack extension are 
minimal, and the other at high stresses where the crack 
nucleation and extension are much higher. The tran- 
sition regime where the strain rate-stress curve chan- 
ges its slope due to a drastic change of rate of crack 
nucleation and its extension is expected to be governed 
by the pore size, the pore volume fraction, the grain 
size and the pore and grain size distribution. In 
general, the transition regime is expected to move to 
lower stresses at larger grain sizes and at higher poros- 
ity volume fractions. The results of Warshow and 
Norton [15] for polycrystalline alumina, who reported 
stress exponent of unity at small grain, but at large 
grain sizes found a stress exponent of four may be 
interpreted in this manner. 

6. Conclusions 
Crack opening displacement concept is found to be a 
useful approach when interpreting the creep data in 
porous solids. It is shown that the presence of pores 
not only increases the number of crack precursors 
but also affects the crack opening displacement. As 
anticipated, the creep rate due to stress concentration 
outside a circular cavity is shown to be 2 to 3 times 
larger than the corresponding creep rate in the 
presence of straight isolated cracks unattached to 
pores. The effect of stress concentration is accom- 
modated by the s/R which takes into account the effect 
of inherent (radial) flaw size (s) and the pore size (R). 

Further, it is predicted that the creep rate by crack 
growth is also assisted by the presence of elastic and 
thermal anisotropy. In coarse-grained anisotropic 
ceramics, the number of crack precursors and the 
crack extension rate are expected to be greatly increased 
during stressing due to the additive nature of the 
applied and anisotropic stresses at certain localities. In 
fine-grained ceramics, where anisotropic stresses are 

minimal, no sharp transition from low to high stress 
exponent regimes are anticipated. Consequently, from 
the point of view of creep resistance, high density, fine 
grained, isotropic ceramics free of internal cracks are 
expected to exhibit highest resistance to creep defor- 
mation under high-stress low-temperature regimes. 
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